organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-{[3-(2-Chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethylcyclopropan-1-yl]carbonyl}-3-(methylsulfonyl)imidazolidin-2-one

Na-Bo Sun,^a Guo-Wu Rao^{b*} and Jian-Bo Chu^c

^aCollege of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China, ^bCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ^cDepartment of Pharmacy, Zhejiang Medical College, Hangzhou 310053, People's Republic of China

Correspondence e-mail: rgw@zjut.edu.cn

Received 7 May 2012; accepted 10 May 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.062; wR factor = 0.175; data-to-parameter ratio = 13.7.

In the title molecule, $C_{13}H_{16}ClF_3N_2O_4S$, the imidazolidine ring is approximately planar, the largest deviation from this plane being 0.025 (3) Å. The cyclopropane ring forms a dihedral angle of 64.1 (2)° with the imidazolidine ring. In the crystal, $C-H\cdots O$ hydrogen bonds are observed.

Related literature

For the biological activities of pyrethroids, see: Chen & Yu (1991); Sun *et al.* (2008). For the crystal structures of similar compounds, see: Sun, Shen, Rao *et al.* (2006); Sun, Shen, Zheng *et al.* (2006). For the synthesis of the title compound, see: Sun *et al.* (2008).

Experimental

Crystal data

 $C_{13}H_{16}CIF_{3}N_{2}O_{4}S$ $M_{r} = 388.79$ Monoclinic, $P2_{1}/c$ a = 15.404 (4) Å b = 9.483 (2) Å c = 11.858 (3) Å $\beta = 103.464$ (4)°

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1997) $T_{\rm min} = 0.761, T_{\rm max} = 0.930$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.062$	217 parameters
$wR(F^2) = 0.175$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.57 \text{ e } \text{\AA}^{-3}$
2964 reflections	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$

V = 1684.5 (8) Å³

Mo $K\alpha$ radiation

 $0.68 \times 0.40 \times 0.18 \; \mathrm{mm}$

6863 measured reflections

2964 independent reflections

2548 reflections with $I > 2\sigma(I)$

 $\mu = 0.40 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.022$

Z = 4

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2A\cdots O4^{i}$	0.97	2.50	3.267 (5)	136
$C3-H3A\cdots O4^{ii}$	0.97	2.50	3.352 (6)	146
$C13-H13C\cdots O2^{iii}$	0.96	2.57	3.331 (6)	137

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors are grateful to the Program of the Education Department of Zhejiang Province of China (grant No. Y200803060) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2475).

References

- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, F. H. & Yu, Z. S. (1991). Chem. J. Chin. Univ. 12, 485-487.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, N.-B., Shen, D.-L., Rao, G.-W., Tan, C.-X. & Weng, J.-Q. (2006). Acta Cryst. E62, 02123–02124.
- Sun, N. B., Shen, D. L., Tan, C. X., Weng, J. Q., Cong, S. & Fu, H. (2008). Chin. J. Org. Chem. 28, 713–717.
- Sun, N.-B., Shen, D.-L., Zheng, R.-H., Tan, C.-X. & Weng, J.-Q. (2006). Acta Cryst. E62, 05679–05680.

supplementary materials

Acta Cryst. (2012). E68, o1744 [doi:10.1107/S1600536812021216]

1-{[3-(2-Chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethylcyclopropan-1yl]carbonyl}-3-(methylsulfonyl)imidazolidin-2-one

Na-Bo Sun, Guo-Wu Rao and Jian-Bo Chu

Comment

Pyrethroids have a high potential for biological activity with low toxicity and good environmental compatibility. They have been widely used in making pesticides (Chen & Yu, 1991; Sun *et al.*, 2008). In a continuation of our studies of the biological activities of pyrethroids, we have obtained a colourless crystalline compound, whose structure has been confirmed by single-crystal X-ray diffraction. The crystal structures of two similar compounds have already been published (Sun, Shen, Rao *et al.*, 2006; Sun, Shen, Zheng *et al.*, 2006).

The molecular structure of the title compound is illustrated in Fig. 1. Atoms N1, C2, C3, N2 and C1 are approximately planar, the largest deviation from this plane being 0.025 (3) Å for atom N1. The cyclopropane ring (C5—C7) forms dihedral angles of 89.49 (22) ° and 64.07 (21) ° with the least-squares planes of the C8, C9, C6 grouping and the imidazolidine ring, respectively. In the crystal structure, intermolecular C—H…O hydrogen bonds are observed. A short intermolecular contact of O3…C3 = 3.02 Å is present.

Experimental

The title compound was synthesized according to the published procedure (Sun *et al.*, 2008). A solution of the compound in ethanol was concentrated gradually at room temperature to afford colourless blocks.

Refinement

H atoms were included in calculated positions and refined using a riding model. Csp^2 —H = 0.93 Å, Cmethyl—H = 0.96 Å, Cmethylene—H = 0.97 Å and Cmethine—H = 0.98 Å. $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and 1.2 for all other H atoms.

Computing details

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Figure 1

The molecular structure of the title compound, shown with 30% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure 2

A portion of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

> F(000) = 800 $D_{\rm x} = 1.533 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.7 - 26.7^{\circ}$ $\mu = 0.40 \text{ mm}^{-1}$ T = 298 KBlock, colourless $0.68 \times 0.40 \times 0.18 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 3411 reflections

 $2\sigma(I)$

1-{[3-(2-Chloro-3,3,3-trifluoroprop-1-enyl)-2,2- dimethylcyclopropan-1-

yl]carbonyl}-3-(methylsulfonyl)imidazolidin-2-one

Crystal data
$C_{13}H_{16}ClF_3N_2O_4S$
$M_r = 388.79$
Monoalinia D2 /

$M_r = 300.79$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 15.404 (4) Å
<i>b</i> = 9.483 (2) Å
c = 11.858 (3) Å
$\beta = 103.464 \ (4)^{\circ}$
V = 1684.5 (8) Å ³
Z = 4

Data collection

Bruker SMART CCD	6863 measured reflections
diffractometer	2964 independent reflections
Radiation source: fine-focus sealed tube	2548 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.022$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 1.4^{\circ}$
Absorption correction: multi-scan	$h = -18 \rightarrow 14$
(SADABS; Bruker, 1997)	$k = -8 \rightarrow 11$
$T_{\min} = 0.761, \ T_{\max} = 0.930$	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.062$	Hydrogen site location: inferred from
$wR(F^2) = 0.175$	neighbouring sites
S = 1.11	H-atom parameters constrained
2964 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0729P)^2 + 2.4194P]$
217 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{\rm max} = 0.57 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.53 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
F1	0.0849 (3)	1.1070 (3)	0.3133 (2)	0.1095 (13)
F2	0.0338 (3)	1.2094 (4)	0.4425 (3)	0.1146 (13)
F3	0.1607 (3)	1.2571 (3)	0.4218 (4)	0.1126 (12)
O3	0.5270 (2)	0.1855 (3)	0.3889 (3)	0.0683 (9)
O4	0.4640 (3)	0.1833 (3)	0.5579 (3)	0.0778 (10)
C13	0.3639 (4)	0.1076 (5)	0.3604 (6)	0.0918 (18)
H13A	0.3575	0.1240	0.2790	0.138*
H13B	0.3101	0.1352	0.3822	0.138*
H13C	0.3749	0.0092	0.3768	0.138*
S	0.45301 (6)	0.20590 (10)	0.43865 (8)	0.0461 (3)
Cl1	0.16342 (14)	1.09317 (14)	0.64639 (11)	0.1095 (7)
01	0.3400 (2)	0.4131 (3)	0.5463 (2)	0.0605 (8)
O2	0.2822 (2)	0.7813 (3)	0.3499 (2)	0.0585 (7)
N2	0.34790 (19)	0.5737 (3)	0.4009 (2)	0.0407 (7)
N1	0.4231 (2)	0.3728 (3)	0.4092 (3)	0.0450 (7)
C7	0.1933 (2)	0.7923 (3)	0.5495 (3)	0.0385 (7)
H7	0.1997	0.8140	0.6319	0.046*
C10	0.1603 (2)	0.9097 (4)	0.4727 (3)	0.0418 (8)
H10	0.1507	0.8925	0.3935	0.050*
C6	0.1633 (2)	0.6421 (4)	0.5170 (3)	0.0399 (8)
C4	0.2957 (2)	0.6873 (4)	0.4208 (3)	0.0414 (8)
C1	0.3662 (2)	0.4485 (4)	0.4631 (3)	0.0396 (8)
C8	0.1030 (3)	0.6147 (4)	0.3983 (3)	0.0543 (10)
H8A	0.1197	0.6759	0.3424	0.081*
H8B	0.0421	0.6326	0.4007	0.081*
H8C	0.1091	0.5183	0.3767	0.081*

C5	0.2599 (2)	0.6822 (3)	0.5266 (3)	0.0378 (7)	
Н5	0.3018	0.6469	0.5961	0.045*	
C12	0.1041 (3)	1.1499 (4)	0.4206 (4)	0.0608 (11)	
C3	0.3890 (3)	0.5794 (4)	0.3006 (3)	0.0505 (9)	
H3A	0.4298	0.6584	0.3072	0.061*	
H3B	0.3437	0.5882	0.2288	0.061*	
C11	0.1428 (3)	1.0371 (4)	0.5035 (3)	0.0492 (9)	
C2	0.4380 (3)	0.4417 (5)	0.3047 (4)	0.0604 (11)	
H2A	0.4140	0.3856	0.2362	0.072*	
H2B	0.5012	0.4573	0.3107	0.072*	
C9	0.1443 (3)	0.5501 (4)	0.6126 (4)	0.0527 (9)	
H9A	0.0815	0.5302	0.5973	0.079*	
H9B	0.1624	0.5983	0.6855	0.079*	
H9C	0.1768	0.4633	0.6158	0.079*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
F1	0.183 (4)	0.078 (2)	0.0565 (17)	0.059 (2)	0.0057 (19)	0.0025 (14)
F2	0.117 (3)	0.110 (3)	0.131 (3)	0.074 (2)	0.059 (2)	0.031 (2)
F3	0.130 (3)	0.0571 (18)	0.151 (3)	0.0027 (18)	0.032 (2)	0.032 (2)
O3	0.0670 (19)	0.070 (2)	0.078 (2)	0.0244 (15)	0.0374 (16)	0.0059 (15)
O4	0.119 (3)	0.067 (2)	0.0551 (18)	0.0320 (19)	0.0358 (18)	0.0181 (15)
C13	0.081 (4)	0.057 (3)	0.132 (5)	-0.011 (3)	0.014 (3)	-0.020(3)
S	0.0538 (6)	0.0429 (5)	0.0461 (5)	0.0096 (4)	0.0209 (4)	0.0010 (4)
Cl1	0.2056 (19)	0.0635 (8)	0.0556 (8)	0.0415 (9)	0.0228 (9)	-0.0150 (6)
O1	0.087 (2)	0.0494 (15)	0.0611 (17)	0.0175 (14)	0.0496 (16)	0.0161 (13)
O2	0.0729 (18)	0.0535 (16)	0.0566 (16)	0.0195 (13)	0.0301 (14)	0.0212 (13)
N2	0.0455 (15)	0.0409 (16)	0.0417 (16)	0.0047 (12)	0.0223 (13)	0.0068 (12)
N1	0.0596 (18)	0.0421 (16)	0.0403 (16)	0.0084 (14)	0.0258 (14)	0.0034 (13)
C7	0.0461 (18)	0.0357 (17)	0.0349 (17)	0.0016 (14)	0.0119 (14)	-0.0058 (14)
C10	0.0476 (19)	0.0396 (18)	0.0400 (18)	0.0045 (15)	0.0137 (15)	-0.0037 (15)
C6	0.0441 (18)	0.0354 (17)	0.0434 (19)	0.0008 (14)	0.0162 (15)	-0.0036 (14)
C4	0.0396 (18)	0.0410 (19)	0.0446 (19)	0.0029 (14)	0.0118 (15)	0.0066 (15)
C1	0.0443 (18)	0.0407 (18)	0.0377 (18)	0.0016 (14)	0.0175 (14)	-0.0009 (14)
C8	0.056 (2)	0.050(2)	0.055 (2)	-0.0069 (18)	0.0086 (18)	-0.0113 (18)
C5	0.0428 (18)	0.0356 (17)	0.0359 (17)	0.0056 (14)	0.0107 (14)	-0.0008 (13)
C12	0.075 (3)	0.045 (2)	0.066 (3)	0.019 (2)	0.024 (2)	-0.002 (2)
C3	0.061 (2)	0.057 (2)	0.043 (2)	0.0081 (18)	0.0295 (18)	0.0089 (17)
C11	0.062 (2)	0.041 (2)	0.048 (2)	0.0057 (17)	0.0191 (18)	-0.0066 (16)
C2	0.072 (3)	0.069 (3)	0.050 (2)	0.023 (2)	0.036 (2)	0.018 (2)
C9	0.061 (2)	0.047 (2)	0.057 (2)	-0.0048 (18)	0.0284 (19)	-0.0010 (18)

Geometric parameters (Å, °)

F1-C12	1.303 (5)	С7—Н7	0.9800
F2—C12	1.300 (5)	C10—C11	1.308 (5)
F3—C12	1.337 (6)	C10—H10	0.9300
O3—S	1.414 (3)	C6—C9	1.512 (5)
O4—S	1.401 (3)	C6—C5	1.515 (5)

C13—S	1.738 (5)	C6—C8	1.517 (5)
С13—Н13А	0.9600	C4—C5	1.484 (5)
С13—Н13В	0.9600	C8—H8A	0.9600
С13—Н13С	0.9600	C8—H8B	0.9600
S—N1	1.663 (3)	C8—H8C	0.9600
Cl1—C11	1.734 (4)	С5—Н5	0.9800
01—C1	1.197 (4)	C12—C11	1.481 (6)
O2—C4	1.210 (4)	C3—C2	1.503 (6)
N2—C1	1.392 (4)	С3—НЗА	0.9700
N2—C4	1.397 (4)	С3—НЗВ	0.9700
N2—C3	1.472 (4)	C2—H2A	0.9700
N1—C1	1.397 (4)	C2—H2B	0.9700
N1—C2	1.465 (5)	С9—Н9А	0.9600
C7—C10	1.453 (5)	С9—Н9В	0.9600
C7—C6	1.520 (5)	С9—Н9С	0.9600
C7—C5	1.532 (4)		
S—C13—H13A	109.5	С6—С8—Н8А	109.5
S—C13—H13B	109.5	C6—C8—H8B	109.5
H13A—C13—H13B	109.5	H8A—C8—H8B	109.5
S—C13—H13C	109.5	C6—C8—H8C	109.5
H13A—C13—H13C	109.5	H8A—C8—H8C	109.5
H13B—C13—H13C	109.5	H8B—C8—H8C	109.5
O4—S—O3	118.7 (2)	C4—C5—C6	119.8 (3)
O4—S—N1	108.67 (17)	C4—C5—C7	121.6 (3)
O3—S—N1	104.69 (17)	C6—C5—C7	59.8 (2)
O4—S—C13	110.6 (3)	C4—C5—H5	114.9
O3—S—C13	108.5 (3)	С6—С5—Н5	114.9
N1—S—C13	104.6 (2)	С7—С5—Н5	114.9
C1—N2—C4	128.4 (3)	F2—C12—F1	108.7 (4)
C1—N2—C3	112.8 (3)	F2—C12—F3	103.9 (4)
C4—N2—C3	118.8 (3)	F1—C12—F3	104.3 (4)
C1—N1—C2	113.3 (3)	F2—C12—C11	114.0 (4)
C1—N1—S	124.4 (2)	F1—C12—C11	112.8 (3)
C2—N1—S	120.8 (2)	F3—C12—C11	112.4 (4)
C10—C7—C6	121.2 (3)	N2—C3—C2	104.4 (3)
C10—C7—C5	124.2 (3)	N2—C3—H3A	110.9
C6—C7—C5	59.5 (2)	С2—С3—НЗА	110.9
С10—С7—Н7	113.8	N2—C3—H3B	110.9
С6—С7—Н7	113.8	С2—С3—Н3В	110.9
С5—С7—Н7	113.8	НЗА—СЗ—НЗВ	108.9
C11—C10—C7	126.7 (3)	C10—C11—C12	124.0 (4)
C11—C10—H10	116.7	C10-C11-Cl1	123.6 (3)
C7—C10—H10	116.7	C12—C11—Cl1	112.4 (3)
C9—C6—C5	116.5 (3)	N1—C2—C3	103.8 (3)
C9—C6—C8	114.4 (3)	N1—C2—H2A	111.0
C5—C6—C8	119.4 (3)	C3—C2—H2A	111.0
C9—C6—C7	116.8 (3)	N1—C2—H2B	111.0
C5—C6—C7	60.6 (2)	C3—C2—H2B	111.0

C8—C6—C7	118.7 (3)	H2A—C2—H2B	109.0
O2—C4—N2	117.5 (3)	С6—С9—Н9А	109.5
O2—C4—C5	125.1 (3)	С6—С9—Н9В	109.5
N2—C4—C5	117.4 (3)	H9A—C9—H9B	109.5
O1—C1—N2	127.6 (3)	С6—С9—Н9С	109.5
O1—C1—N1	126.9 (3)	Н9А—С9—Н9С	109.5
N2-C1-N1	105.5 (3)	H9B—C9—H9C	109.5
O4—S—N1—C1	-37.1 (4)	O2—C4—C5—C6	77.1 (5)
O3—S—N1—C1	-164.9 (3)	N2-C4-C5-C6	-102.0 (4)
C13—S—N1—C1	81.1 (4)	O2—C4—C5—C7	6.2 (5)
O4—S—N1—C2	157.4 (3)	N2-C4-C5-C7	-172.8 (3)
O3—S—N1—C2	29.6 (4)	C9—C6—C5—C4	141.2 (3)
C13—S—N1—C2	-84.4 (4)	C8—C6—C5—C4	-3.0 (5)
C6-C7-C10-C11	144.2 (4)	C7—C6—C5—C4	-111.4 (3)
C5-C7-C10-C11	-143.6 (4)	C9—C6—C5—C7	-107.3 (3)
C10—C7—C6—C9	-139.2 (3)	C8—C6—C5—C7	108.4 (3)
C5—C7—C6—C9	106.9 (3)	C10—C7—C5—C4	-0.6(5)
C10—C7—C6—C5	113.9 (4)	C6—C7—C5—C4	108.5 (4)
C10—C7—C6—C8	4.4 (5)	C10—C7—C5—C6	-109.1 (4)
C5—C7—C6—C8	-109.5 (3)	C1—N2—C3—C2	-0.5 (4)
C1—N2—C4—O2	-173.8 (3)	C4—N2—C3—C2	-179.1 (3)
C3—N2—C4—O2	4.6 (5)	C7—C10—C11—C12	-176.2 (4)
C1—N2—C4—C5	5.4 (5)	C7—C10—C11—Cl1	4.5 (6)
C3—N2—C4—C5	-176.3 (3)	F2-C12-C11-C10	127.9 (5)
C4—N2—C1—O1	0.5 (6)	F1-C12-C11-C10	3.4 (6)
C3—N2—C1—O1	-177.9 (4)	F3-C12-C11-C10	-114.2 (5)
C4—N2—C1—N1	-178.6 (3)	F2-C12-C11-Cl1	-52.7 (5)
C3—N2—C1—N1	3.0 (4)	F1-C12-C11-Cl1	-177.3 (4)
C2—N1—C1—O1	176.4 (4)	F3—C12—C11—C11	65.1 (4)
S—N1—C1—O1	10.0 (6)	C1—N1—C2—C3	4.0 (5)
C2—N1—C1—N2	-4.4 (4)	S—N1—C2—C3	171.0 (3)
S—N1—C1—N2	-170.8 (2)	N2-C3-C2-N1	-2.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C2—H2A····O4 ⁱ	0.97	2.50	3.267 (5)	136
C3—H3A····O4 ⁱⁱ	0.97	2.50	3.352 (6)	146
C13—H13 <i>C</i> ···O2 ⁱⁱⁱ	0.96	2.57	3.331 (6)	137

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*, *y*-1, *z*.